Applied Probability Trust (24 March 2004) STOPPING THE MAXIMUM OF A CORRELATED RANDOM WALK, WITH COST FOR OBSERVATION

نویسندگان

  • PIETER ALLAART
  • P. Allaart
چکیده

Let (Sn)n≥0 be a correlated random walk on the integers, let M0 ≥ S0 be an arbitrary integer, and let Mn = max{M0, S1, . . . , Sn}. An optimal stopping rule is derived for the sequence Mn − nc, where c > 0 is a fixed cost. The optimal rule is shown to be of threshold type: stop the first time that Mn−Sn ≥ ∆, where ∆ is a certain nonnegative integer. An explicit expression for this optimal threshold is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Distribution Fitting: Decision on Beliefs

We introduce a new approach to distribution fitting, called Decision on Beliefs (DOB). The objective is to identify the probability distribution function (PDF) of a random variable X with the greatest possible confidence. It is known that f X is a member of = { , , }. 1 m S f L f To reach this goal and select X f from this set, we utilize stochastic dynamic programming and formulate this proble...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

Applied Probability Trust EXACT SAMPLING OF THE INFINITE HORIZON MAXIMUM OF A RANDOM WALK OVER A NON-LINEAR BOUNDARY

We present the first algorithm that samples maxn≥0{Sn − n}, where Sn is a mean zero random walk, and n with α ∈ (1/2, 1) defines a nonlinear boundary. We show that our algorithm has finite expected running time. We also apply this algorithm to construct the first exact simulation method for the steady-state departure process of a GI/GI/∞ queue where the service time distribution has infinite mean.

متن کامل

Uniform Markov Renewal Theory and Ruin Probabilities in Markov Random Walks

Let {Xn, n≥ 0} be a Markov chain on a general state space X with transition probability P and stationary probability π. Suppose an additive component Sn takes values in the real line R and is adjoined to the chain such that {(Xn, Sn), n≥ 0} is a Markov random walk. In this paper, we prove a uniform Markov renewal theorem with an estimate on the rate of convergence. This result is applied to bou...

متن کامل

Applied Probability Trust (26 August 2015) SERIES EXPANSIONS FOR THE ALL-TIME MAXIMUM OF α- STABLE RANDOM WALKS

We study random walks whose increments are α-stable distributions with shape parameter 1 < α < 2. Specifically, assuming a mean increment size which is negative, we provide series expansions in terms of the mean increment size for the probability that the all-time maximum of an α-stable random walk is equal to zero and, in the totally skewed to the left case of skewness parameter β = −1, for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005